Module 08

Introduction to Energy

QUESTIONS

Question 1 (LV1): A $14,000 \mathrm{~kg}$ airplane is flying at an altitude of 500 m . Determine the airplane's kinetic energy when flying at a speed of $300 \mathrm{~km} / \mathrm{h}$.

Question 2 (LV2): The total height of Niagara Falls is 51 m . Find the potential energy of one kilogram of water at the top, when measured with respect to the base of the waterfall.

Question 3 (LV3): A cone is falling from a pine tree from a height of 15 m . How fast is the cone moving as it reaches the ground?

Question 4 (LV4): A spring has a force constant of $12.0 \mathrm{~N} / \mathrm{m}$ has an unstretched length of 3.00 m . When a mass is hung to the end of the spring and allowed to come to rest, the vertical length of the spring is 4.20 m . What is the elastic potential energy stored in the spring?

Question 5 (LV5): A croquet ball strikes a stationary ball of equal mass. The collision is elastic, and the incident ball goes off at and angle of 30° to its original direction. In what direction does the other ball move?

Question 6 (LV6): The potential energy of a $2.0-\mathrm{kg}$ object constrained to the x-axis is given by $U=3 x^{2}-x^{3}$, for $x \leqslant 3.0 \mathrm{~m}$ and $U=0$ for $x \geqslant 3.0 \mathrm{~m}$, where U is in joules and x is in meters. (a) Sketch a plot of U versus x. (b) Determine the point where the speed is maximum.

PROBLEMS

Problem 1 (LV1, LV2, LV3, LV4): A student does a bungee jump from Kawarau Bridge in New Zealand. The unstretched length of the cord is 25.0 m , the mass of the student is 70 kg , and there is a 43.0 m drop above the surface of the river below. Calculate the required force constant of the cord if the student is to stop safely 4.00 m above the river.

Problem 2 (LV1, LV2, LV3): Tarzan swings on a $20.0-\mathrm{m}$ long vine initially inclined at an angle of 40.0° with the vertical. What is his speed at the bottom of the swing if he starts with an initial velocity of $3.00 \mathrm{~m} / \mathrm{s}$?

Problem 3 (LV1, LV5): Two identical billiard balls are initially at rest when they are struck symmetrically by a third identical ball moving with velocity $v_{0}=2 \mathrm{~m} / \mathrm{s}$, as shown in Fig. 1. Find the velocities of all three balls after this elastic collision.

FIG. 1: Collision between three billiard balls.

