Module 06

Dynamics in Two Dimensions

QUESTIONS

Question 1 (LV1): A $10,000-\mathrm{kg}$ airplane accelerates forward at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$ on the way to its destination. Then, a head wind at angle of 80° with respect to the airplane's direction of motion applies a constant force of 1000 N on the airplane. Find the magnitude of the airplane's acceleration.

Question 2 (LV2): A $60-\mathrm{kg}$ student goes on a ride in a Ferris Wheel of radius 45 m . What is the apparent weight of the student at the highest point on the wheel, if she moves with a speed of $5 \mathrm{~m} / \mathrm{s}$ at that point?

Question 3 (LV3): The Earth revolves around the Sun in an orbit that can be approximated by a circle of radius 149.6 million kilometres. What is the free-fall acceleration towards the Sun at the location of Earth's orbit?

Question 4 (LV4): A particle is constrained to move in a circle of radius 1 m . At one instant, the speed of the particle is $2 \mathrm{~m} / \mathrm{s}$, increasing at a rate of $1 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the angle between the velocity of the particle and its acceleration.

PROBLEMS

Problem 1 (LV): A highway turn is banked at 10°, and the coefficient of static friction between the tires and the road is 0.3 . If the turn has a radius of 200 m , what is the safe speed limit at which a car can take the turn?

Problem 2 (LV): A 10000-kg space ship orbits the Earth once every two hours. If the radius of the orbit is $7,000 \mathrm{~km}$, find the radial acceleration and the radial force acting on the space ship.

